
Introduction
Dynamic tensile damage occurs when rarefaction

waves within a material interact to produce tensile

stresses that exceed the threshold for damage initiation1.

If the tension is of sufficient amplitude a new interface

can form, creating a “spall layer.” In some cases where

complete spall does not occur, significant incipient spal-

lation damage may still exist. Plate impact experiments

have been utilized in the past to probe the influence of

peak stress on the damage field within shocked speci-

mens. Evidence that a damage field or spall layer has

been created is often obtained using velocity interferom-

eter for any reflector (VISAR)2. In general, the free sur-

face velocity profile obtained using VISAR shows ring-

ing consistent with wave reflections within a layer thin-

ner than the original sample. The experiments described

here investigate flat-top, triangular, and ramp-wave

damage processes in copper during spallation loading. A

layered flyer plate technique is utilized to produce a tri-

angular shock and a ramp wave for loading and unload-

ing in the target material. A detailed description of this

technique is given elsewhere3. Real-time VISAR meas-

urements combined with analysis of soft recovered sam-

ples is used to examine the damage processes in copper

subjected to three different loading profiles.

Results and discussion
Plate impact experiments were conducted using a

smooth bore, 50-mm diameter gas gun. A schematic of

the three distinct loading profiles is given in Figure 1.

These profiles will be referred to as flat-top shock, tri-

angular shock, and ramp-wave loading, respectively.

The influence of these three different wave profiles on

damage evolution was investigated at two different peak

shock pressures in five flyer plate experiments. VISAR

results were obtained from each specimen and are given
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Figure 1. Schematic of (a) flat-top shock, (b) triangu-

lar shock, and (c) ramp wave.
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Figure 2. VISAR records for plate impact recovery

experiments.
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in Figure 2. In addition to the VISAR experi-

ments, soft recovery experiments were con-

ducted to allow for postmortem metallography

of the specimens. These specimens were

cross-sectioned parallel to the loading direc-

tion and examined optically. A composite of

the optical images of the 3 GPa recovered

copper specimens is shown in Figure 3.

The influence of wave profile may be

observed most clearly in the 3 GPa experi-

ments. The flat-top shock wave results in

highly localized damage as observed in Figure

3b. The ringing in the 3 GPa flat-top shock

VISAR data observed in Figure 2 is the result

of this free surface within the specimen. In the

3 GPa triangular-wave shocked specimen, a

layer of small diameter voids is observed

(Figure 3a), however, the distribution of this

damage indicates that the tensile stresses

within the specimen during shock loading

were distributed over a larger volume of mate-

rial as compared to the flat-top shock loaded

specimen.  In Figure 2 the particle velocity for

the 3 GPa triangular shock does not show the

ringing observed in the flat-top shock but

does indicate wave reflections that are likely

due to this layer of small voids. Finally, in the

ramp-wave experiments, the damage consists

of a scattered field of large ductile voids as

observed in Figure 3c. This indicates that the

damage region was under tension for a signifi-

cantly longer period of time and over a much

larger volume than the triangular shock speci-

men. In Figure 2 the VISAR data does not

suggest any indication of damage having

occurred within the specimen. 

Conclusions
Shock wave profile shape and peak stress

are shown to influence the damage evolution

within high purity copper. These experiments

provide insight into the development of dam-

age during shock loading and the relation of

damage evolution to the interaction of com-

pression and release waves within a specimen.

Differences in shock-hardening effects related

to shock wave profile were not determined

here. Future work will focus on a systematic

comparison of the dynamic work-hardening

processes operative during shock and ramp

loading of copper.
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Figure 3. Composite of the optical metallography of the recovered specimens.


